Formation of a Five-membered Carbocyclic Ring by Reaction of Zirconacyclopentane with RCOCI ($R = Ph, Pr^i, Et$)

Tamotsu Takahashi,* Martin Kotora and Zhenfeng Xi

Institute for Molecular Science and the Graduate University for Advanced Studies, Myodaiji, Okazaki 444, Japan

Zirconacyclopentane reacts with RCOCI in the presence of a catalytic amount of CuCI/LiCI to give a five-membered carbocyclic ring.

Zirconacyclopentane is a very attractive compound since it is easily prepared from alkenes or dienes.^{1–4} In order to produce a five-membered carbocyclic ring from a zirconacyclopentane, a one carbon unit is required. Only carbon monoxide^{2,4} or isonitrile³ have been used so far as the one carbon unit with zirconacycles such as zirconacyclopentanes. In this paper we report that zirconacyclopentanes react with RCOCl (R = Ph, Prⁱ, Et) in the presence of a catalytic amount of CuCl/LiCl to give five-membered carbocyclic ring compounds, eqn. (1).

To a solution of zirconacyclopentane 1a,^{1d} which was prepared from 4,5-diethylocta-1,4,7-triene and Negishi's reagent [(C₅H₅)₂ZrCl₂, BuⁿLi (2 equiv.)], was added a catalytic amount of CuCl (10 mg, 0.1 mmol) and benzoyl chloride (141 mg, 1.0 mmol) at -10 °C. The reaction mixture was warmed to room temperature and stirred for 24 h. Cyclopentene derivative **4a** was obtained in 75% yield after treatment with 3 mol dm⁻³ HCl (Scheme 1).

Cyclopentene derivatives **4a–e** were obtained from **1a–c** in good to high yields (Table 1). In order to investigate the reaction mechanism, the reaction was quenched with iodine before warming to room temperature, yielding products **3a–e** as shown in Table 1. This suggests that the intermediate has an alkyl–zirconium bond and a ketone group. The reaction of **1b** was monitored by NMR spectroscopy and formation of **2b** was observed. Its ¹H NMR spectrum showed two singlets at δ 6.14 and 6.17 assigned to the (C₅H₅) rings. The ¹³C NMR spectrum showed two cyclopentadienyl signals at δ 112.89 and 113.14, and indicated that **2b** has a carbonyl group (δ 200.16), and methylene carbons attached to zirconium (δ 56.43). Iodination of **2b** gave **3b** as described above. This clearly indicated that the

copper catalysed carbon–carbon bond formation with RCOCl in the first step at -10 °C gives 2.

Copper catalysed or mediated carbon–carbon bond formation reaction of zirconacyclopentadienes or zirconacyclopentenes has been recently reported by our group.^{4–6} A plausible mechanism of the first step of zirconacyclopentanes with PhCOCl involves a transmetallation of an alkyl carbon attached to zirconium to copper giving **5** as observed for other systems.^{4–6} It is known that alkylzirconocene chlorides such as $(C_5H_5)_2ZrR^1Cl$ react with R²COCl to give acylation products R^1COR^2 in the presence of a copper catalyst.⁷

It is very interesting that only one alkyl carbon attached to zirconium reacts with RCOCl at -10 °C, although there are two alkyl-zirconium bonds in zirconacyclopentanes **1a–c**. Double acylation products were not obtained at -10 °C. When Bu'COCl was used with **1c**, the sequential cyclization did not proceed due to steric factors. The first alkyl-zirconium bond reacted with Bu'COCl at -10 °C to give **6** in 83% yield after hydrolysis of **7**. Even in the presence of an excess of Bu'COCl, only one alkyl-zirconium bond reacted. However, warming of

Scheme 1 Reagents and conditions: i, PhCOCl, cat. CuCl/LiCl; ii, I_2 ; iii, 24 h, room temp.; iv, H⁺

		Iodination Product		Cyclis	sed Product
 Zirconacyclopentane	RCOC1	3	Yield (%) ^a	4	Yield (%) ^a
(C ₅ H ₅) ₂ Zr	PhCOCl	3a	95 (63)	4a	75 (54)
$(C_5H_5)_2Zr$	PhCOCl	3b	75 (60)	4b	58 (50)
1b ^b	PhCOCl	3c	64 (53) ^d	4c	95 (84) ^{d,e}
(C ₅ H ₅) ₂ Zr	PriCOCl	3d	64 (56) ^d	4d	76 (55) ^{d,e}
 1c°	EtCOCl	3e	55 (48) ^d	4e	68 (56) ^{<i>d.e</i>}

Table 1 Reaction of zirconacyclopentane with RCOCl in the presence of a catalytic amount of CuCl

^{*a*} GC yields. ^{*b*} Only *cis* isomer, ref. 1*d*. ^{*c*} A mixture of *cis* and *trans* (5:1), ref. 2*b*. Isolated yields are given in parentheses. ^{*d*} A mixture of *cis* and *trans*. ^{*e*} Contains double bond positional isomers.

the mixture to room temperature afforded the corresponding double acylation product **8** in 89% yield. The different reactivity of two alkyl-zirconium bonds of zirconacyclopentanes is due to the strain in the zirconacyclopentane system.⁸ This is in sharp contrast to the case of dialkylzirconocenes such as $(C_5H_5)_2$ ZrMe₂ where both methyl groups showed a similar reactivity toward PhCOCl in the presence of a catalytic amount of CuCl.

Intermediate **2b** intramolecularly cyclized to give **4b** when the reaction mixture was stirred for 24 h at room temperature and treated with 3 mol dm⁻³ HCl. This type of intramolecular nucleophilic attack of zirconium compounds to carbonyl group is unprecedented even after transmetallation from zirconium to copper. It is not clear yet but both of **2b** and **9** should be considered as the species which cyclized. Application of this reaction to a bridged cyclopentene compound was achieved, when terephthaloyl chloride was used, yielding symmetrical **10** (48%).

Received, 27th April 1995; Com. 5/02685G

References

- Formation of zirconacyclopentanes, see (a) I. Gell and J. Schwartz, J. Am. Chem. Soc., 1981, 103, 2687; (b) W. A. Nugent and D. F. Taber, J. Am. Chem. Soc., 1989, 111, 6435; (c) K. S. Knight, D. Wang, R. M. Waymouth and J. Ziller, J. Am. Chem. Soc., 1994, 111, 1845; (d) T. Takahashi, M. Kotora and K. Kasai, J. Chem. Soc., Chem. Commun., 1994, 2693.
- 2 For CO insertion reaction of zirconacyclopentanes, see H. Yasuda, K. Nagasuna, M. Akita, K. Lee and A. Nakamura, Organometallics, 1984, 3, 1470; C. J. Rousset, D. R. Swanson, F. Lamaty and E. Negishi, *Tetrahedron Lett.*, 1989, 30, 5105; D. R. Swanson, C. J. Rousset, E. Negishi, T. Takahashi, T. Seki, M. Saburi and Y. Uchida, J. Org. Chem., 1989, 54, 3521; G. Angel, Z. Owczarczyk and E. Negishi, *Tetrahedron Lett.*, 1992, 33, 1543.
- 3 For RCN insertion reaction of zirconacyclopentanes, see J. M. Davis, R. J. Whitby and A. J.-Chamiec, *Tetrahedron Lett.*, 1992, 33, 5655; J. M. Davis, R. J. Whitby and A. J.-Chamiec, *Synlett*, 1994, 111.
- 4 T. Takahashi, M. Kotora, K. Kasai and N. Suzuki, Organometallics, 1994, 13, 4183.
- 5 K. Kasai, M. Kotora, N. Suzuki and T. Takahashi, J. Chem. Soc., Chem. Commun., 1995, 109.
- 6 T. Takahashi, M. Kotora and Z. Xi, J. Chem. Soc., Chem. Commun., 1995, 362.
- 7 P. Wipf and W. Xu, Synlett, 1992, 718.
- 8 C. Coperet, E. Negishi, Z. Xi and T. Takahashi, Tetrahedron Lett., 1994, 35, 695.